Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.

Identifieur interne : 001193 ( Main/Exploration ); précédent : 001192; suivant : 001194

Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.

Auteurs : Melissa Roach [Suède] ; Stéphanie Arrivault [Allemagne] ; Amir Mahboubi [Suède] ; Nicole Krohn [Allemagne] ; Ronan Sulpice [Allemagne, Irlande (pays)] ; Mark Stitt [Allemagne] ; Totte Niittyl [Suède]

Source :

RBID : pubmed:28645173

Descripteurs français

English descriptors

Abstract

The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks.

DOI: 10.1093/jxb/erx200
PubMed: 28645173
PubMed Central: PMC5853372


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.</title>
<author>
<name sortKey="Roach, Melissa" sort="Roach, Melissa" uniqKey="Roach M" first="Melissa" last="Roach">Melissa Roach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arrivault, Stephanie" sort="Arrivault, Stephanie" uniqKey="Arrivault S" first="Stéphanie" last="Arrivault">Stéphanie Arrivault</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krohn, Nicole" sort="Krohn, Nicole" uniqKey="Krohn N" first="Nicole" last="Krohn">Nicole Krohn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sulpice, Ronan" sort="Sulpice, Ronan" uniqKey="Sulpice R" first="Ronan" last="Sulpice">Ronan Sulpice</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Systems Biology Laboratory, Plant AgriBiosciences Research Centre, School of Natural Science, Galway, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Plant Systems Biology Laboratory, Plant AgriBiosciences Research Centre, School of Natural Science, Galway</wicri:regionArea>
<wicri:noRegion>Galway</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stitt, Mark" sort="Stitt, Mark" uniqKey="Stitt M" first="Mark" last="Stitt">Mark Stitt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28645173</idno>
<idno type="pmid">28645173</idno>
<idno type="doi">10.1093/jxb/erx200</idno>
<idno type="pmc">PMC5853372</idno>
<idno type="wicri:Area/Main/Corpus">001272</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001272</idno>
<idno type="wicri:Area/Main/Curation">001272</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001272</idno>
<idno type="wicri:Area/Main/Exploration">001272</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.</title>
<author>
<name sortKey="Roach, Melissa" sort="Roach, Melissa" uniqKey="Roach M" first="Melissa" last="Roach">Melissa Roach</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arrivault, Stephanie" sort="Arrivault, Stephanie" uniqKey="Arrivault S" first="Stéphanie" last="Arrivault">Stéphanie Arrivault</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krohn, Nicole" sort="Krohn, Nicole" uniqKey="Krohn N" first="Nicole" last="Krohn">Nicole Krohn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sulpice, Ronan" sort="Sulpice, Ronan" uniqKey="Sulpice R" first="Ronan" last="Sulpice">Ronan Sulpice</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Systems Biology Laboratory, Plant AgriBiosciences Research Centre, School of Natural Science, Galway, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Plant Systems Biology Laboratory, Plant AgriBiosciences Research Centre, School of Natural Science, Galway</wicri:regionArea>
<wicri:noRegion>Galway</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stitt, Mark" sort="Stitt, Mark" uniqKey="Stitt M" first="Mark" last="Stitt">Mark Stitt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cambium (enzymology)</term>
<term>Cambium (growth & development)</term>
<term>Carbon (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Phloem (enzymology)</term>
<term>Phloem (growth & development)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Wood (enzymology)</term>
<term>Wood (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (croissance et développement)</term>
<term>Bois (enzymologie)</term>
<term>Cambium (croissance et développement)</term>
<term>Cambium (enzymologie)</term>
<term>Carbone (métabolisme)</term>
<term>Phloème (croissance et développement)</term>
<term>Phloème (enzymologie)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bois</term>
<term>Cambium</term>
<term>Phloème</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bois</term>
<term>Cambium</term>
<term>Phloème</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cambium</term>
<term>Phloem</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Cambium</term>
<term>Phloem</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28645173</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>68</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.</ArticleTitle>
<Pagination>
<MedlinePgn>3529-3539</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erx200</ELocationID>
<Abstract>
<AbstractText>The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks.</AbstractText>
<CopyrightInformation>© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roach</LastName>
<ForeName>Melissa</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arrivault</LastName>
<ForeName>Stéphanie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mahboubi</LastName>
<ForeName>Amir</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krohn</LastName>
<ForeName>Nicole</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sulpice</LastName>
<ForeName>Ronan</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Plant Systems Biology Laboratory, Plant AgriBiosciences Research Centre, School of Natural Science, Galway, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stitt</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niittylä</LastName>
<ForeName>Totte</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>J Exp Bot. 2018 Jul 18;69(16):4143-4144</RefSource>
<PMID Version="1">29889254</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Aspen</Keyword>
<Keyword MajorTopicYN="Y">Populus</Keyword>
<Keyword MajorTopicYN="Y">primary metabolism</Keyword>
<Keyword MajorTopicYN="Y">wood formation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28645173</ArticleId>
<ArticleId IdType="pii">3883921</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erx200</ArticleId>
<ArticleId IdType="pmc">PMC5853372</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:473-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Aug;22(8):2872-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24367078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Apr;125(4):2029-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):29-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):80-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(8):R76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Jan;7(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7894514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Aug;63(4):680-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(2):796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28032636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:293-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Apr;15(4):952-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Sep;203(4):1220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24920335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Feb;29(2):207-228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28138016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Feb;134(2):586-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):859-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2014 Mar;14(4-5):579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24323582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 19;473(7347):337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jan;223(2):159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Nov;17(11):656-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22776090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Jun;11(6):M111.010025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22215636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Dec;29(12):1599-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1234-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Jun;6(3):208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2015 Jul 7;87(13):6896-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Apr;19(4):256-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24332227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13124-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Jun;81(2):367-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Sep;59(5):826-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jul;150(3):1204-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jun;70(6):967-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22288715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):912-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):239-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Apr;30(2):221-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1998 Jul;259(1):88-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9738884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(8):R129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18710526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):744-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3304-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2012;8:606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22929616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18272-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):91-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25082890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2687-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jun;51(6):981-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Apr;58(2):260-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19175765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1574-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2000;35(4):253-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005202</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Irlande (pays)</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Roach, Melissa" sort="Roach, Melissa" uniqKey="Roach M" first="Melissa" last="Roach">Melissa Roach</name>
</noRegion>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Arrivault, Stephanie" sort="Arrivault, Stephanie" uniqKey="Arrivault S" first="Stéphanie" last="Arrivault">Stéphanie Arrivault</name>
</noRegion>
<name sortKey="Krohn, Nicole" sort="Krohn, Nicole" uniqKey="Krohn N" first="Nicole" last="Krohn">Nicole Krohn</name>
<name sortKey="Stitt, Mark" sort="Stitt, Mark" uniqKey="Stitt M" first="Mark" last="Stitt">Mark Stitt</name>
<name sortKey="Sulpice, Ronan" sort="Sulpice, Ronan" uniqKey="Sulpice R" first="Ronan" last="Sulpice">Ronan Sulpice</name>
</country>
<country name="Irlande (pays)">
<noRegion>
<name sortKey="Sulpice, Ronan" sort="Sulpice, Ronan" uniqKey="Sulpice R" first="Ronan" last="Sulpice">Ronan Sulpice</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001193 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001193 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28645173
   |texte=   Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28645173" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020